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Human childhood is characterized by dramatic changes in the mind and brain. However, little is known about the large-scale intrinsic
cortical network changes that occur during childhood because of methodological challenges in scanning young children. Here, we
overcome this barrier by using sophisticated acquisition and analysis tools to investigate functional network development in children
between the ages of 4 and 10 years (n ¼ 92; 50 female, 42 male). At multiple spatial scales, age is positively associated with brain net-
work segregation. At the system level, age was associated with segregation of systems involved in attention from those involved in
abstract cognition, and with integration among attentional and perceptual systems. Associations between age and functional connectiv-
ity are most pronounced in visual and medial prefrontal cortex, the two ends of a gradient from perceptual, externally oriented cortex
to abstract, internally oriented cortex. These findings suggest that both ends of the sensory-association gradient may develop early, in
contrast to the classical theories that cortical maturation proceeds from back to front, with sensory areas developing first and associa-
tion areas developing last. More mature patterns of brain network architecture, controlling for age, were associated with better visuo-
spatial reasoning abilities. Our results suggest that as cortical architecture becomes more specialized, children become more able to
reason about the world and their place in it.
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Significance Statement

Anthropologists have called the transition from early to middle childhood the “age of reason”, when children across cultures
become more independent. We employ cutting-edge neuroimaging acquisition and analysis approaches to investigate associa-
tions between age and functional brain architecture in childhood. Age was positively associated with segregation between
cortical systems that process the external world and those that process abstract phenomena like the past, future, and minds of
others. Surprisingly, we observed pronounced development at both ends of the sensory-association gradient, challenging the
theory that sensory areas develop first and association areas develop last. Our results open new directions for research into
how brains reorganize to support rapid gains in cognitive and socioemotional skills as children reach the age of reason.
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Introduction
Children’s minds develop fastest during the first decade of life.
Sensory and motor skills develop before complex cognitive skills:
children can see and walk before they can solve abstract puzzles.
Diverse skills including reasoning, executive function, emotion
regulation, and social cognition all improve dramatically until 8–
10 years of age, after which change slows down (Akshoomoff et
al., 2014; Kopp, 1989; Wellman, 2014); Whitaker et al., 2018; but
see Fortenbaugh et al., 2015). Developmental psychologists once
called these changes the “5- to 7-year shift”, that is, the transition
from Piaget’s preoperational stage, in which children rely
on perceptual information, to the concrete operational stage, in
which children are less bound by perceptual information and
more able to think abstractly (Sameroff and Haith, 1996).
Anthropologists have called this developmental period the “age
of reason” or the “age of sense”, when children become more
independent from their parents, begin to build more complex
social relationships with peers and other adults, and become
less egocentric and more able to understand others’ perspec-
tives (Chandler and Lalonde, 1996; Lancy, 2014).

A core tenet of developmental cognitive neuroscience is that
brain development proceeds along the sensory-association axis,
with sensory areas developing first and association areas develop-
ing last (Sydnor et al., 2021; Tooley et al., 2021). This sequence is
in line with data from both behavioral and cognitive develop-
ment (Cole et al., 2005). The far end of the association axis is
anchored by the default mode system (Smallwood et al., 2021),
which is farthest from sensory input and engages primarily in
abstract cognitive processes that do not rely on the current sen-
sory environment. Examples of such processes include remem-
bering the past, projecting the future, and taking the perspective
of others (Buckner and DiNicola, 2019). Other association sys-
tems, such as the dorsal and ventral attention systems, receive
and process more input from the outside world (Corbetta and
Shulman, 2002). The frontoparietal system can be thought of as a
toggle controlling the switch between internally and externally
oriented cognition, flexibly coordinating other systems, and
holding sensory information on-line. Such processes are com-
monly exemplified in working memory and reasoning tasks
(Owen et al., 2005; Cole et al., 2013).

Data on structural brain development, including cortical thin-
ning, surface area, and white matter coherence, clearly support
early development of sensory areas (Stiles and Jernigan, 2010;
Raznahan et al., 2011; Whitaker et al., 2016; Gennatas et al.,
2017; Reynolds et al., 2019). However, regions of the default
mode system, including the medial prefrontal cortex and the pre-
cuneus, also show early structural development (Brown and
Jernigan, 2012; Li et al., 2013; Wierenga et al., 2014; Li et al.,
2015). Thus, another possibility is that both ends of the sen-
sory-association axis become anchored early in life, and devel-
opmental processes differentiate and refine the boundaries of
attention and executive systems along this axis later in develop-
ment. Brain structure is easier to measure than function in
sleeping children, so it has been better characterized in early
childhood (Lenroot and Giedd, 2006; Houston et al., 2014).
However, brain function may be more closely linked to cogni-
tion and behavior (Zimmermann et al., 2018; Dhamala et al.,
2021), particularly during development when the brain is highly
plastic (Chen et al., 2020).

Functional brain networks can be studied at multiple spatial
scales, such as over the whole brain, across systems, and among
regions or parcels. Understanding how functional networks reor-
ganize at the whole-brain level allows us to examine the extent to

which segregation is an overall guiding principle of development,
whereas studying the constituent systems (sometimes referred to
as “networks” in the literature) allows for examination of rela-
tionships among specialized functional subnetworks. The parcel
resolution yields more granular detail about which specific brain
areas, or network nodes, might drive effects. Segregation refers to
the presence of groups or subnetworks of densely interconnected
nodes and is thought to emerge partially as a result of maturing
inhibitory interneurons; synchronized inhibition may be neces-
sary for establishing segregated network function (Cardin, 2018;
Kraft et al., 2020; Chini et al., 2022).

Functional network development has been studied predom-
inantly in middle childhood (7–10 years) or later (for review,
see Grayson and Fair, 2017; Morgan et al., 2018) because of the
challenges of acquiring high-quality data in younger children
while they are awake. From middle childhood through adoles-
cence, at the whole-brain level, networks become more modu-
lar and segregated with age, supporting improved cognition
(Satterthwaite et al., 2013b; Gu et al., 2015; Grayson and Fair,
2017; Marek et al., 2019). At the system resolution, age is associ-
ated with increases in within-system connectivity and decreases
in between-system connectivity, particularly between the default
mode system and executive control and attention systems (Fair
et al., 2008; Satterthwaite et al., 2013b; Chai et al., 2014; Gu et al.,
2015; Lopez et al., 2020; Jones and Astle, 2021). At the regional
level, effects are less consistent, perhaps because findings vary
widely depending on the age range studied (Grayson and Fair,
2017; Morgan et al., 2018). Another way to examine parcel-level
effects is to examine the development of the sensory-association
axis across cortex. Two recent and well-powered studies found
that in middle childhood, a sensory-association gradient is in
place, but the most variance in patterns of connectivity is
explained by separation between visual and somatomotor sys-
tems (Dong et al., 2021; Xia et al., 2022). By age 12 years, how-
ever, the organization of the sensory-association gradient
resembles that of adults; development of the primary sensory-
association gradient may be mediated by changes in network
architecture (Dong et al., 2021; Xia et al., 2022). Functional net-
work architecture has been shown to have cognitive consequen-
ces; youth with more segregated networks, and in particular
task-positive (i.e., attention and control systems) and task-neg-
ative (i.e., default mode) systems, perform better on a wide vari-
ety of cognitive tasks (Gu et al., 2015; Marek et al., 2019; Lopez
et al., 2020; Jones and Astle, 2021; Xia et al., 2022).

A few studies have characterized functional network devel-
opment in children younger than 6 years of age and overall sug-
gest developmental specialization of cortex with age. In utero, a
proto-default-mode system is detectable, and visual and motor
systems show overlap with that found in adults, but attention
and frontoparietal systems remain undifferentiated (Turk et al.,
2019; Thomason, 2020). Infant brain networks can be studied
during sleep; primary sensory systems have an adult-like archi-
tecture at birth, but default, ventral attention, and dorsal atten-
tion systems do not develop a distributed network architecture
until 1–2 years of age, and executive control systems are still
immature at 2 years of age (Gilmore et al., 2018). The anticorrela-
tion between default and dorsal attention system connectivity
begins to emerge around 1 year of age (Gao et al., 2013; n ¼ 147).
From the age of 3months to 6 years, within-system connectivity
broadly increases with age, whereas between-system connectiv-
ity decreases (Bruchhage et al., 2020; n ¼ 196, natural sleep).
Another way to address challenges involved in scanning young
children is to have them view movies. A study of children age
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4–7 years showed that age was positively associated with con-
nectivity in systems identified with an independent component
analysis, including sensory, motor, default mode, and executive
control systems but not the ventral attention system (Rohr et
al., 2018; n ¼ 60). An analysis of the same sample also found
that age was negatively associated with connectivity between
seeds in the dorsal attention system (intraparietal sulcus, frontal
eye fields) and areas of the default mode system (Rohr et al.,
2017; n ¼ 44). In general, more mature patterns of connectivity
are associated with better performance on measures of atten-
tion and cognition (Rohr et al., 2017, 2018; Bruchhage et al.,
2020; Qi et al., 2021). These studies of young children have
examined connectivity between specific regions or subsets of
regions, but not the architecture of intrinsic cortical networks
at rest. Hence, little is known about how rewiring of intrinsic
functional networks supports the profound cognitive changes
that take place during childhood.

The Present Research
Here, we focused on functional brain network development
between the ages of 4 and 10 years (n ¼ 92). To overcome bar-
riers associated with resting-state data collection from young
children, we applied sophisticated neuroimaging acquisition and
analysis approaches to minimize motion and its impacts, includ-
ing sequences optimized to reduce motion artifacts (Tisdall et al.,
2012), real-time motion monitoring (Dosenbach et al., 2017),
rigorous image quality assurance using open-source tools, and a
preprocessing pipeline optimized to reduce the impact of head
motion. We used network science tools to take a hierarchical
analytical approach, asking first whether whole-brain measures
of network topology are associated with age, and then which
systems and parcels of cortex drive patterns of topological
refinement. Finally, we asked whether network structure was
associated with cognition. We focused on reasoning because it
is a core skill that develops rapidly until middle childhood
(Whitaker et al., 2018), is highly predictive of later academic
outcomes (Fuchs et al., 2006; Ferrer et al., 2007; Pagani et al.,
2017), and was assessed across the majority of our sample. If
age-associated changes in network architecture support reason-
ing skills, then individual differences in reasoning, controlling
for age, should mirror associations with age. In other words, we
predict that children with more mature functional architecture,
that is, greater network segregation, should have better cogni-
tive skills.

Materials and Methods
Participants. The Institutional Review Board at the University of

Pennsylvania approved this study. All parents provided informed,
written consent. Children younger than age 8 provided verbal
assent, and children ages 8 and older provided written assent.
Participants were recruited from Philadelphia and the surrounding
regions through advertisements on public transportation, partnerships
with local schools, outreach programs, community family events, and
social media ads. Children were between the ages of 4 and 10.59 years
(mean = 6.85, SD = 1.38). We chose to collect data from children starting
at 4 years of age, as collecting functional brain imaging data from awake
children younger than 4 may result in large amounts of unusable data.
Parents were asked to report their child’s gender and were provided four
sex categories—female, male, other, and prefer not to answer. We recog-
nize that the wording of this question conflated sex and gender, making
it impossible for us to investigate the relation between brain develop-
ment and the child’s gender identity, whether within or outside the bi-
nary. Fifty-four percent of the children were reported by parents to be
male, and 46% were reported by parents to be female; none were

reported to be other, suggesting that we might not have any intersex chil-
dren in our sample. The racial and ethnic makeup of the sample was as
follows: 61% Black, 36% White, 20% Asian, 8% other, and 10%
Hispanic/Latino. Percentages sum to. 100% because parents or guardi-
ans could endorse multiple races. Forty-nine percent of children had a
parent with a college degree or more education, and 45% had an annual
family income of $50,000 or more. For comparison, Philadelphia was
43.6% Black, 44.8% White, 7.8% Asian, 3.9% Other, and 15.2% Hispanic
or Latino in 2020, and the median household income was $49,127 (U.S.
Census Bureau, 2020).

The target sample size was 123 children with usable data to detect
correlations of r ¼ 0:25 with a power of . 0.8. However, data usability
in young children can be difficult to predict, and data collection was cut
short in 2020 by the COVID-19 pandemic. Resting-state scans were
acquired for 138 participants. Ninety-two participants were included in
the final sample. Participants were excluded for not completing the rest-
ing-state scan (e.g., because of falling asleep or wanting to end the scan
early, n ¼ 17) or parent-reported diagnosis of Attention-Deficit/
Hyperactivity Disorder or developmental delay during the visit, despite
not reporting a diagnosis during screening (n ¼ 4).

To mitigate the effect of image quality on our analyses, we also used
motion and quality exclusions. We excluded children with average
framewise displacement (FD) . 1 mm (n ¼ 14), and we censored vol-
umes at 0.5 mm FD.We further excluded children with. 30% of frames
exceeding 0.5 mm FD (n ¼ 8; Power et al., 2012) or artifacts (n ¼ 3; see
below for details). These criteria were selected to balance the need to
include as much data as possible in a young population (Leonard et al.,
2017) and the need to limit the influence of low-quality data on connec-
tivity metrics (Power et al., 2014). Separately, we conducted an addi-
tional sensitivity analysis with stricter motion cutoffs, excluding children
with. 0.5 mm average FD (n ¼ 9) and censoring volumes with. 0.25
mm FD.

A total of 25 children were excluded for image artifacts or motion in
the original sample. At the more lenient threshold, these children were
younger than the included children (t 40:15ð Þ ¼ �2:79, p ¼ 0:008), but
not different on age-normed reasoning scores (t 37:60ð Þ ¼ �1:47,
p ¼ 0:150). At the stricter threshold, 34 children were excluded for
image artifacts or motion; excluded children were younger than the
included children (t 50:96ð Þ ¼ �2:13, p ¼ 0:038), but not different on
age-normed reasoning scores (t 52:15ð Þ ¼ �1:46, p ¼ 0:150).

Data acquisition. Before the scanning session, participants were
acclimated to the scanning environment with a mock scanner that simu-
lates typical MRI noises. Participants practiced keeping still in the mock
scanner by watching a movie that would pause each time they moved
their heads . 1 mm. During the MRI session, a researcher stayed in the
scanner room with the participant to reassure the child. Participants
viewed a fixation cross on a gray screen throughout the resting-state
scan.

Imaging was performed at the Center for Advanced Magnetic
Resonance Imaging and Spectroscopy at the University of Pennsylvania.
Scanning was conducted using a Siemens MAGNETOM Prisma 3 T
MRI scanner with a Siemens 32-channel coil. Five-minute resting-state
fMRI scans were acquired using a T2*-weighted multiband gradient-
echo echoplanar imaging (EPI) sequence [TR = 2000ms, TE = 30.2ms,
bandwidth (BW) = 1860Hz/pixel, flip angle = 90°, voxel size = 2 mm
isotropic, matrix size = 96 � 96, 75 axial slices, FOV = 192 mm, vol-
umes = 150–240, 5 dummy scans, multiband acceleration factor = 3].
We chose a multiband factor of three to minimize interactions between
multiband and motion (Risk et al., 2021). A whole-brain, high-resolution,
T1-weighted 3D-encoded multiecho anatomic image (MEMPRAGE) was
acquired (TR = 2530ms, TEs = 1.69ms/3.55ms/5.41ms/7.27ms, BW =
650Hz/pixel, 3� GRAPPA, flip angle = 7°, voxel size =1 mm isotropic,
matrix size = 256 � 256, 176 sagittal slices, FOV = 256 mm, total scan
time of 4:38min). This anatomic sequence used interleaved volumetric
navigators to prospectively track and correct for subject head motion
(Tisdall et al., 2012).

To increase the amount of usable data, midway through data collec-
tion, we updated our acquisition strategy in two ways, by (1) monitoring
head motion in real-time using the Framewise Integrated Real-time MRI
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Monitor system (Dosenbach et al., 2017) and (2) collecting 10min of
low-motion resting-state data (two resting-state runs of data with
FD, 1 mm) when possible. An incidental feature of this design choice
is that it decouples age and reasoning ability from the amount of data
acquired for each child. One scan was acquired for 43 children, two
scans were acquired for 48 children, and three scans were acquired for
one child. Participants were eligible for inclusion if they had . 135
frames of resting-state data. Participants had an average FD of 0.3 mm
(SD = 0.18 mm). For participants with more than one usable resting-
state run, we took an average of FD across runs, weighted by run length.
All analyses controlled for average FD and total number of resting-state
frames collected.

Image preprocessing. Results included in this article come from pre-
processed data, where the preprocessing was performed using FreeSurfer
(Dale et al., 1999); fMRIPprep version 1.2.6-1 (RRID:SCR_016216;
Esteban et al., 2018, 2019), which is based on Nipype version 1.1.7
(RRID:SCR_002502; Gorgolewski et al., 2011, nipy/nipype:1.1.7); as well
as xcpEngine version 1.0 (Ciric et al., 2018). Brain surfaces were recon-
structed using the recon-all command (Dale et al., 1999) before other
processing, and reconstructed surfaces were used as input to fMRIprep.

The T1-weighted (T1w) image was corrected for intensity nonuni-
formity using N4BiasFieldCorrection (Tustison et al., (2010), Advanced
Normalization ToolS (ANTS) version 2.2.0), and used as T1w reference
throughout the workflow. The T1w reference was then skull stripped
using antsBrainExtraction.sh script (ANTS version 2.2.0), using OASIS
as the target template. The brain mask was refined with a custom varia-
tion of the method to reconcile ANTS-derived and FreeSurfer-derived
segmentations of the cortical gray matter of Mindboggle (RRID:SCR_
002438, Klein et al., 2017). Spatial normalization to the ICBM 152
Nonlinear atlases version 2009c. (RRID:SCR_008796; Fonov et al., 2011)
was performed through nonlinear registration with antsRegistration
(ANTS, version 2.2.0, RRID:SCR_004757; Avants et al., 2010), using brain-
extracted versions of both T1w volume and template. Brain tissue segmen-
tation of CSF, white matter (WM), and gray matter was performed on the
brain-extracted T1w using fast [Functional MRI of the Brain Software
Library (FSL) version 5.0.9; RRID:SCR_002823; Zhang et al., 2001].

For each of the resting-state BOLD runs found per subject, the fol-
lowing preprocessing was performed. A reference volume and its
skull-stripped version were generated using a custom methodology
of fMRIPrep. The BOLD reference was then coregistered to the T1w
reference using bbregister (FreeSurfer), which implements bound-
ary-based registration (Greve and Fischl, 2009). Coregistration was
configured with nine degrees of freedom to account for distortions
remaining in the BOLD reference. Head-motion parameters with
respect to the BOLD reference (transformation matrices and six cor-
responding rotation and translation parameters) were estimated
before any spatiotemporal filtering using the mcflirt tool (FSL ver-
sion 5.0.9; Jenkinson et al., 2002). BOLD runs were slice-time cor-
rected using 3dTshift from Analysis of Functional NeuroImages (AFNI)
20160207 (RRID:SCR_005927; Cox and Hyde, 1997). The BOLD time se-
ries were resampled onto MNI152NLin2009cAsym standard space by
applying a single, composite transform, generating a preprocessed
BOLD run in MNI152NLin2009cAsym space.

Several confounding time series were calculated based on the prepro-
cessed BOLD, including FD, DVARS (root-mean-square intensity differ-
ence from one volume to the next), and three region-wise global signals
(CSF, WM, and the whole brain). FD and DVARS were calculated for
each functional run, both using their implementations in Nipype (fol-
lowing the definitions by Power et al., 2014). The head-motion estimates
calculated in the correction step were also placed within the correspond-
ing confounds file.

All resamplings can be performed with a single interpolation step by
composing all the pertinent transformations (i.e., head-motion transform
matrices and coregistrations to anatomic and template spaces). Gridded
(volumetric) resamplings were performed using antsApplyTransforms
(ANTS), configured with Lanczos interpolation to minimize the smooth-
ing effects of other kernels (Lanczos, 1964).

Further preprocessing was performed using a confound regression
procedure that has been optimized to reduce the influence of participant

motion (Satterthwaite et al., 2013b; Ciric et al., 2017; Parkes et al., 2018);
preprocessing was implemented in XCPEngine 1.0, a multimodal tool
kit that deploys processing instruments from frequently used software
libraries, including FSL (Jenkinson et al., 2012) and AFNI (Cox, 1996).
Further documentation is available at https://xcpengine.readthedocs.io
and https://github.com/PennBBL/xcpEngine. Functional time series
were demeaned, and linear and quadratic trends were removed.
Confound regression was performed using a 36-parameter model; con-
founds included mean signal from the whole brain, WM, and CSF
compartments, six motion parameters as well as their temporal deriva-
tives, quadratic terms, and the temporal derivatives of the quadratic
terms (Satterthwaite et al., 2013a). Motion censoring was applied, with
outlier volumes exceeding FD = 0.5 mm or standardized DVARS = 1.75
flagged and removed from confound regression. Outlier volumes were
interpolated over using least-squares spectral analysis (Power et al.,
2014) before bandpass filtering to retain frequencies between 0.01Hz
and 0.08Hz, then recensored. Before confound regression, all con-
found parameters were bandpass filtered in a fashion identical to that
applied to the original time series data, ensuring comparability of the
signals in frequency content (Hallquist et al., 2013).

Image quality and exclusion criteria. The quality of imaging data was
assessed using fMRIPrep visual reports and MRIQC 0.14.2 software
(Esteban et al., 2017). Two raters manually examined all structural and
functional images between preprocessing steps for image quality issues.
Functional images were visually inspected for whole-brain field of view
coverage, signal blurring or artifacts, and proper alignment to the ana-
tomic image. Participants were excluded for unusable anatomic image
(n = 1), artifact in functional data (because of hair glitter, n ¼ 1), incor-
rect registration at the scanner (n ¼ 1), average FD . 1 mm (n ¼ 14),
and . 30% of resting-state frames exceeding FD . 0.5 mm (n ¼ 8,
Power et al., 2012). All participants who were flagged for dropout or
signal blurring were ultimately excluded for not meeting motion crite-
ria. For participants with more than one usable resting-state run, FD
was averaged across runs, weighted by run length. All analyses con-
trolled for average FD and total number of resting-state frames.

To ensure that our results were not driven by motion, we conducted
an additional analysis with a more stringent preprocessing pipeline and
motion exclusion criteria. In this pipeline, motion censoring was applied
with a threshold for outlier volumes of FD . 0.25 mm or standardized
DVARS . 1.75. One participant was excluded during preprocessing
because of not having adequate degrees of freedom. Additionally, we
excluded participants who had average FD . 0.5 mm (n ¼ 8 additional
participants), for a total of n ¼ 83 participants.

Functional network analysis. After preprocessing and nuisance
regression, we extracted residual mean BOLD time series from a 400-
region cortical parcellation (Schaefer et al., 2018) and represented the
functional connectivity matrix as a graph or network (Bassett et al.,
2018). To evaluate whether our results were dependent on specific
node definitions, we also extracted residual mean BOLD time series
from a 200-region cortical parcellation (Schaefer et al., 2018). Results
were qualitatively similar between the two parcellations (https://github.
com/utooley/Tooley_2022_childhood_functional_network_dev).

We assigned regions, or nodes, to systems based on a seven-system
partition (Yeo et al., 2011), or assignment of nodes to systems. Here, we
use the term “system” to refer to a set of regions previously defined a pri-
ori (i.e., the dorsal attention system, comprising a set of regions), and we
use the term “network” to refer to the representation of the functional
connectivity matrix as a graph. Regions were represented by network
nodes, and the functional connectivity between region i and region j was
represented by the network edge between node i and node j. We used
this encoding of the data as a network to produce an undirected, signed,
and weighted adjacency matrix A. We estimated the functional connec-
tivity between any two brain regions by calculating the product-moment
correlation coefficient r between the mean activity time series of region i
and the mean activity time series of region j (Zalesky et al., 2012).
Correlations were subsequently r to z transformed.

Prior evidence has demonstrated that the maintenance of edge
weights is critical for an accurate understanding of the underlying biol-
ogy of neural systems (Cole et al., 2012; Bassett and Bullmore, 2017),
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and work in applied mathematics has demonstrated that graph-related
calculations are markedly more robust in weighted graphs than in binary
graphs (Good et al., 2010). In light of these two lines of evidence and
recent work in the field developing methods sensitive to the topologies
present in weak versus strong edges (Rubinov and Sporns, 2011), we
maintained all edge weights without thresholding and studied the full
graph including both positive and negative correlations (Bassett et al.,
2012; Santarnecchi et al., 2014). Functional connectivity matrices were
averaged across runs for each participant, weighted by the number of
frames in each run passing the quality threshold.

Across the cortex, we calculated the following summary functional
network measures. System segregation is a measure of segregation that
quantifies the difference between mean within-system connectivity and
mean between-system connectivity as a proportion of mean within-sys-
tem connectivity (Chan et al., 2014; Wig, 2017), given an a priori parti-
tion of nodes into systems, in this case the seven-system partition
mentioned earlier (Yeo et al., 2011). Modularity, quantified by the
modularity quality index (Q), is a measure of mesoscale network seg-
regation that estimates the extent to which the nodes of a network
can be subdivided into groups or modules characterized by strong,
dense intramodular connectivity and weak, sparse intermodular con-
nectivity. Our approach is built on the modularity quality function
originally defined in Newman (2006). Unlike system segregation, the
modularity quality index is independent of a mapping of nodes to
functional systems. Higher modularity is indicative of a more highly
segregated network at the mesoscale. The clustering coefficient is a
measure of local segregation that quantifies the amount of connectiv-
ity between a node and its strongest neighbors (Achard et al., 2006;
Bartolomei et al., 2006; Bassett et al., 2006; J. Xu et al., 2016). A node
has a high clustering coefficient when a high proportion of its neigh-
bors are also strong neighbors of each other. The participation coef-
ficient quantifies the diversity of a the connections of a node across
systems (Guimerà and Amaral, 2005; Rubinov and Sporns, 2010). A
node has a high participation coefficient when it is evenly and
strongly connected to many different systems. A lower participation
coefficient is indicative of a more highly segregated network. We
specifically chose measures of functional network topology that
were suitable for weighted, signed networks, when possible.

System segregation. System segregation quantifies the difference
in mean within-system connectivity and mean between-system con-
nectivity as a proportion of within-system connectivity. Previous
work has linked this measure to aging-related changes in brain net-
works and poorer cognitive ability across age (Chan et al., 2014). In
these analyses, we define system segregation as in (Chan et al., 2014)
as the following:

�awithin � �abetween

�awithin
;

where �awithin is the mean edge weight between nodes within the same
system, and �abetween is the mean edge weight between nodes of one sys-
tem to all nodes in other systems. We assigned nodes to systems based
on a seven-system partition (Yeo et al., 2011). Freely available MATLAB
code from https://github.com/mychan24/system_matrix_tools was used
to calculate system segregation.

Modularity quality index. Statistics that quantify the modular
structure of a network assess the extent to which the nodes of a net-
work can be subdivided into groups or modules characterized
by strong, dense intramodular connectivity and weak, sparse inter-
modular connectivity. We considered the most commonly studied
mesoscale organization—assortative community structure—that is
commonly assessed by maximizing a modularity quality function
(Porter et al., 2009; Fortunato, 2010). Our approach is built on the
modularity quality function originally defined by Newman (2006)
and subsequently extended to weighted and signed networks by vari-
ous groups.

Specifically, we follow Rubinov and Sporns (2011) by first letting the
weight of a positive connection between nodes i and j be given by a1ij ;
the weight of a negative connection between nodes i and j be given by

a�ij, and the strength of a node i, s6i ¼
X

j
a
6
ij , be given by the sum of

the positive or negative j connection weights of i. We denote the chance
expected within-module connection weights as e1ij for positive weights

and e�ij for negative weights, where e6ij ¼ s6i s
6
j

v6
: We let the total weight

v6 ¼
X

ij
a6ij be the sum of all positive or negative connection weights

in the network. Then the asymmetric generalization of the modularity
quality index is given by the following:

Q� ¼ 1
v1

X
ij

a1ij � e1ij
� �

d MiMj �
1

v1 1 v�

X
ij

a�ij � e�ij
� �

d MiMj ;

where Mi is the community to which node i is assigned, and Mj is the
community to which node j is assigned. We use a Louvain-like locally
greedy algorithm as a heuristic to maximize this modularity quality
index subject to a partition M of nodes into communities. We ran the
Louvain algorithm 100 times per network, and detected on average three
(mean = 3.44, SD = 0.483) communities using modularity maximization
in our developmental sample.

Clustering coefficient. To assess local network segregation, we used a
commonly studied graph measure of local connectivity—the clustering
coefficient—that is commonly interpreted as reflecting the capacity of
the system for processing within the immediate neighborhood of a given
network node (Achard et al., 2006; Bartolomei et al., 2006; Bassett and
Bullmore, 2006; T. Xu et al., 2016). We specifically used a formulation
that was previously generalized to signed weighted networks (Zhang and
Horvath, 2005; Costantini and Perugini, 2014). This version is sensitive
to nonredundancy in path information based on edge sign as well as
edge weight and importantly distinguishes between positive triangles
and negative triangles, which have distinct meanings in networks con-
structed from correlation matrices.

Let the functional connectivity network of a single participant be rep-
resented as the graph G ¼ V;Eð Þ; where V and E are the vertex and
edge sets, respectively. Let aij be the weight associated with the edge
i; jð Þ 2 V; and define the weighted adjacency matrix of G as A ¼ aij½ �:
The clustering coefficient of node i with neighbors j and q is given by the
following:

Ci ¼

X
jq
ajiaiqajqð ÞX

j6¼q
jajiaiqj

:

The clustering coefficient of the entire network was calculated as the
average of the clustering coefficient across all nodes as follows:

C ¼ 1
n

X
i2N

Ci:

In this way, we obtained estimates of the regional and global cluster-
ing coefficient for each subject in the sample.

Participation coefficient. The participation coefficient is a measure of
network integration that quantifies the diversity of the connections of a
node across communities and has been linked in older children and ado-
lescents to developmental changes in network segregation (Marek et al.,
2015; Baum et al., 2017). In these analyses, we define the participation
coefficient Pi of a node i as follows:

Pi ¼ 1�
X
k2K

aik
si

� �
;

where k is a system in a set K of systems, in this case defined by the a pri-
ori mapping of nodes to intrinsic functional systems (Yeo et al., 2011),
aik is the positive (negative) weight of edges between node i and nodes in
system k, and si is the positive (negative) strength of node i. The
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participation coefficient was calculated separately on negative and posi-
tive weights (Rubinov and Sporns, 2010).

As in our analyses of local segregation, the participation coefficient
of the entire network was calculated as the average positive (negative)
participation coefficient across all nodes as follows:

P ¼ 1
n

X
i2N

Pi:

The average positive and negative participation coefficient for each
participant’s network was averaged to obtain a global measure of net-
work integration.

System connectivity. Within- and between-system connectivity was
estimated as the average connectivity between nodes within a functional
system or between pairs of functional systems. Results were corrected
for multiple comparisons using the Benjamini–Hochberg false discovery
rate (FDR).

Parcel-level connectivity. When examining results at the parcel reso-
lution, we applied a similar model as that at the whole-brain and system
level across all 79,800 edges in each child’s functional brain network. As
correction for multiple comparisons in this situation raises the risk of
missing true effects, we alternatively used a stringent significance thresh-
old for display of edge-level data (p , 0:001). Data are presented at
p , 0:01 and at p , 0:00001 online at https://github.com/utooley/
Tooley_2022_childhood_functional_network_dev.

Statistical models. All statistical analyses were conducted in
MATLAB R2018a and R3.6.1 (https://www.r-project.org/); code is pub-
licly available at https://github.com/utooley/Tooley_2022_childhood_
functional_network_dev. We examined effects of age using generalized
additive models with the mgcv package in R (Wood, 2011; Satterthwaite
et al., 2014). We first tested for nonlinear effects of age. The penalty pa-
rameters for the nonlinear spline terms were fit as random effects and
tested using restricted likelihood ratio tests with RLRsim (Scheipl et al.,
2008). Note that these tests of nonlinearity are constructed to test for
nonlinear effects over and above any linear effects that may be present.
We did not observe significant nonlinear relationships between age and
whole-brain or system-level measures of network structure. When exam-
ining edge-level age effects, 7.9% of edges showed significant nonlinear
effects of age compared with 12.5% of edges that showed linear effects.
Nonlinear effects at the parcel level are presented online at https://
github.com/utooley/Tooley_2022_childhood_functional_network_dev.

We modeled the linear effect of age while controlling for in-scanner
motion (average FD), sex (male or female), total number of volumes
across runs, and average functional network weight. Average network
weight was included to control for global differences in connectivity
strength (Van Wijk et al., 2010; Ginestet et al., 2011; Yan et al., 2013).
Multiple comparisons correction was applied across models at the parcel
and system resolutions using Benjamini and Hochberg’s (1995) FDR
correction. Surfaces and partitions were shown on cortical surfaces gen-
erated by FreeSurfer (Dale et al., 1999), using fsbrain 0.4.2 and freesur-
fer-formats 0.1.14 (Schäfer and Ecker, 2020).

Measurement and analyses of visuospatial reasoning ability. To
assess reasoning, we administered matrix reasoning tests from Wechsler
batteries. We used age-appropriate versions to avoid ceiling and floor
effects. Children between the ages of 4 and 7 years and 7months com-
pleted the Matrix Reasoning subtest of the Wechsler Preschool and
Primary Scale of Intelligence (WPPSI-IV, Wechsler, 2012; n ¼ 63).
Children over the age of 7 years and 7months took the Matrix
Reasoning subtest of the Wechsler Intelligence Scale for Children
(WISC, Wechsler, 2014; n ¼ 23). Test items in both versions require
the participant to identify and integrate patterns in abstract shapes.
For example, the foreground and background shapes switch across
columns, and the shape type and color change across rows (see Fig.
4a). To answer the question correctly, it is necessary to integrate these
two relations. The WPPSI is normed down to 2.5 years of age so it
begins with simpler items than does the WISC. Therefore, raw scores
on the WPPSI cannot be combined with raw scores on the WISC. Age
was positively associated with raw scores on the WPPSI (mean raw

score, 15.31, range 3–23; maximum possible score, 26, t 62ð Þ ¼ 2:78,
p ¼ 0:007). Age was not associated with raw scores on the WISC (mean
raw score, 16.13, range 7–24; maximum possible score, 32, t 21ð Þ ¼ 0:40,
p ¼ 0:694). Scaled scores were used for all brain analyses. Models examin-
ing relationships between reasoning and system connectivity controlled for
age, sex, in-scanner motion, total number of volumes across runs, and aver-
age functional network weight. Associations between system connectivity
and reasoning ability were examined only for systems showing significant
associations with age and the frontoparietal system (FDR-corrected for mul-
tiple comparisons across five systems).

Results
Functional network segregation increases with age
We first investigated age effects on measures of whole-brain
functional network segregation (Fig. 1). Measures of functional
network segregation were consistently positively associated with
age, including average within-system connectivity (b ¼ 0.3,
t 86ð Þ ¼ 3:75, p , 0:001, pFDR ¼ 0.0006), average between-
system connectivity (b ¼ �0.06, t 86ð Þ ¼ �3:75, p , 0:001,
pFDR ¼ 0.0006), overall system segregation (b ¼ 0.11,
t 86ð Þ ¼ 3:60, p ¼ 0:001, pFDR ¼ 0.0008), the modularity quality
index (b ¼ 0.19, t 86ð Þ ¼ 3:06, p ¼ 0:003, pFDR ¼ 0.004), and
the clustering coefficient (b ¼ 0.19, t 86ð Þ ¼ 2:35, p ¼ 0:021,
pFDR ¼ 0.021). Consistent with these associations, we found that
the average participation coefficient, a measure that inversely
tracks network segregation, was negatively correlated with age
(b ¼ �0.35, t 86ð Þ ¼ �4:68, p , 0:001, pFDR ¼ 0.00006).

Systems specializing in perceptual processing segregate from
systems for abstract thought
We next tested for age effects at the system level by dividing the
cortex into seven systems (Yeo et al., 2011). We first visualized
the balance of significant positive and negative age effects within
and between systems (Fig. 2a). Within systems, 94.6% of signifi-
cant age effects were positive, and 5.3% were negative. Between
systems, 27.7% of significant age effects were positive, and 72.2%
were negative. Age was positively, but weakly, associated with
within-system connectivity in the visual (Fig. 2b; b ¼ 0.25,
t 86ð Þ ¼ 2:51, p ¼ 0:014) and default mode systems (b ¼ 0.24,
t 86ð Þ ¼ 2:42, p ¼ 0:017), as well as in the ventral attention sys-
tem (b ¼ 0.24, t 86ð Þ ¼ 2:41, p ¼ 0:018). The significance of
these associations did not survive correction for multiple com-
parisons. In contrast, age was strongly associated with between-
system connectivity (Fig. 2c). Age was negatively associated with
connectivity between the default mode and dorsal attention sys-
tems (b ¼ �0.24, t 86ð Þ ¼ �3:79, p , 0:001, pFDR ¼ 0.01) and
connectivity between the default mode and ventral attention sys-
tems (b ¼ �0.22, t 86ð Þ ¼ �3:36, p ¼ 0:001, pFDR ¼ 0.02).
Additionally, age was positively correlated with connectiv-
ity between the visual and dorsal attention systems (b ¼
0.32, t 86ð Þ ¼ 3:15, p ¼ 0:002, pFDR ¼ 0.02) and with connec-
tivity between the dorsal attention and ventral attention
systems (b ¼ 0.22, t 86ð Þ ¼ 2:92, p ¼ 0:004, pFDR ¼ 0.03).

Age effects are concentrated at both ends of the sensory-
association gradient
We next examined age effects at the parcel level to characterize
regional specificity. In particular, we determined which parcels
had the most edges with significant age effects. Parcels with the
highest number of positive edge-level age effects were observed
in the intraparietal sulcus (two parcels with nine significant
edges), the medial prefrontal cortex (seven edges), and the occi-
pital cortex (six edges; Fig. 3a). When parcels were grouped by

8242 • J. Neurosci., November 2, 2022 • 42(44):8237–8251 Tooley et al. · Functional Brain Network Development in Childhood

https://github.com/utooley/Tooley_2022_childhood_functional_network_dev
https://github.com/utooley/Tooley_2022_childhood_functional_network_dev
https://www.r-project.org/
https://github.com/utooley/Tooley_2022_childhood_functional_network_dev
https://github.com/utooley/Tooley_2022_childhood_functional_network_dev
https://github.com/utooley/Tooley_2022_childhood_functional_network_dev
https://github.com/utooley/Tooley_2022_childhood_functional_network_dev


system (Yeo et al., 2011), positive associations with age were
most common in the visual system, followed by the default mode
system and the ventral attention system (Fig. 3b). Parcels with
negative edge-level age effects were also concentrated in the
medial prefrontal cortex and the intraparietal sulcus, but not in
lower-level sensory or motor areas (Fig. 3c). Edge-level age
effects were most pronounced in a medial prefrontal cortex par-
cel in the default mode system (top parcel, medial prefrontal cor-
tex, 13 negative age-associated edges). The top five non-anatomical
meta-analytic associations on Neurosynth for the medial prefrontal
cortex region (MNI coordinates of centroid, x = 8, y = 54, z = 12)
were “mind”, “theory mind”, “autobiographical”, “mentalizing”, and
“mental states”. Negative associations with age were most common
in the default mode system and the ventral attention system, fol-
lowed by the dorsal attention and frontoparietal systems.

Very few negative associations were found in the visual,
somatomotor, or limbic systems (Fig. 3d).

Functional network structure is associated with cognition
Finally, we explored the cognitive consequences of age-associated
network segregation by examining relationships between func-
tional architecture and visuospatial reasoning (matrix reasoning
fromWechsler tests (Wechsler, 2012, 2014); Fig. 4a). Controlling
for age, reasoning was positively associated with average within-
system connectivity (b ¼ 0.34, F 1; 79ð Þ ¼ 4:78, p ¼ 0:032,
pFDR ¼ 0.08) and negatively associated with average between-
system connectivity (b ¼�1.57, F 1; 79ð Þ ¼ 4:78, p ¼ 0:032,
pFDR ¼ 0.08) and average participation coefficient (b ¼ �0.35,
F 1; 79ð Þ ¼ 4:39, p ¼ 0:039, pFDR ¼ 0.08). However, these associ-
ations did not pass correction for multiple comparisons, and
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Figure 1. Functional network segregation is positively associated with age. a, System segregation is a whole-brain measure of functional network segregation that quantifies the difference
between mean within-system connectivity and mean between-system connectivity as a proportion of mean within-system connectivity. b, System segregation is positively associated with age.
c, Modularity is a measure of mesoscale network segregation that estimates the extent to which the nodes of a network, or in this case brain regions, can be subdivided into modules character-
ized by strong, dense intramodular connectivity and weak, sparse intermodular connectivity. Note that the modules are data driven, not a priori defined as functional systems. d, Modularity is
positively associated with age. e, The clustering coefficient is a measure of local segregation that quantifies the amount of connectivity between a node and its neighbors. A node has a high
clustering coefficient when a high proportion of its neighbors are also strongly connected to one another. In a weighted network, the clustering coefficient measures the strength of triangles
around a node. f, The average clustering coefficient is positively associated with age. g, The participation coefficient quantifies the diversity of the connections of a node. A node has a high par-
ticipation coefficient when it is evenly connected to many different systems. A lower participation coefficient is indicative of a more segregated network. h, The average participation coefficient
is negatively associated with age. Plots show 95% confidence intervals and partial residuals, controlling for in-scanner motion, sex, total number of volumes, and average network weight.

0��$�%�%� -��	����%%&%
�&

�� �� �� �� �� �� ��

�� ��

�� ��

� ��

�� ��

� ��

ba

�� �� �� �� �� �� ��
�������	�

� "

� !

� �

� �

� �
2
	$��

)�*�%�*�%��

�� �� �� �� �� �� ��
�������	�

0��	����%%&%
�&

�� �� �� �� �� �� ��
�������	�

� "

� !

� �

� �

� ��

� ��

� "�

� !�

� ��

� "�

� !�

� ��

�� �� �� �� �� �� ��

�������	�

� "

� !

� �

� �

2&%�����%%&%
�&

�� �� �� �� �� �� ��

�������	�

�
*�
'

� ��

� ��

� "�

� !�

� "�

� ��

�� �� �� �� �� �� ��
�������	�

3��&%����
%��

� ��

� ��

� "�

� !�

� "�

�� �� �� �� �� �� ��
�������	�

0��$�%

� ��

� ��

� "�

� !�

� "�

� !�

���('%	��&��
%/
&�	�	%*�'�&&'%
1
%�

2

	$

��

0��$�%

3�
�&

%�
�

��
�


%�
�

�

*

�

'

2&
%����

�%%&
%
�

&

0��	����%%&%
�&
)�*�%�*�%��

�� ��

� ��

� ��

� ��

� ��

� "�

�� �� �� �� �� �� ��
�������	�

��	
%
1����('%�

&��%
1����('%

2
	$���%� -��	����%%&%
�&

�������	�

0��$�%�%� 1&%�����%%&%
�&

�� �� �� �� �� �� ��

�������	�

���('%	��&��%�&�	�	%*�'�&&'%
1
%�

���� "��

���� ��

���� "��

���� �"
���� ��

& 	 

���� �"

& 	 

���� "!�

���� �"

���� ��

& 	 ���� ��

���� ��

����� "��

���� ���"

������ ���

����� ""�

���� ���

������� �"

���� !"

���� ��"

������� �"

0��	����%%&%
�&�%�

1&%�����%%&%
�&

c

�� �� �� �� �� �� ��
�������	�

� ��

� ��

� ��

� ��

�� ��

�� ��

� ��

�� ��

� ��

���� ""

���� ���

������� �!

���('%	��&�-��'�&&'%
1
%�

Figure 2. System-level effects of age on network connectivity. a, Age effects on edge connectivity. Note that only edges with significant age effects at punc, 0:001 are shown. b, Age effects
on within-system connectivity. No relationships survive FDR correction across systems. c, Age effects on between-system connectivity. All effects shown survive FDR correction across systems. n.s.:
not significant. punc: uncorrected p value. Plots show 95% confidence intervals and partial residuals, controlling for in-scanner motion, sex, total number of volumes, and average network weight.
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reasoning was not associated with other meas-
ures of whole-brain network architecture (p
values . 0.05). At the system level, we focused
on pairs of cognitive systems that show signi-
ficant associations with age (Fig. 2c) and
found that connectivity between the visual
and dorsal attention systems was positively
associated with reasoning ability (Fig. 4b;
b = 0.46, t 79ð Þ ¼ 4:06, p, 0:001, pFDR ¼
0.0006). We also found that connectivity
between the default and dorsal attention sys-
tems was negatively associated with reasoning
ability (Fig. 4b, b ¼ �0.55, t 79ð Þ ¼ �2:93,
p ¼ 0:004, pFDR ¼ 0.01). Further, motivated by
prior studies linking the frontoparietal system to
reasoning (Prado et al., 2011; Wertheim and
Ragni, 2018), we tested whether reasoning was
associated with within-system frontoparietal
connectivity; we found no effect (b ¼ 0.07,
t 79ð Þ ¼ 0:51, p ¼ 0:613, pFDR ¼ 0.68). At the
parcel level, connections with the intraparietal
sulcus (top parcel, eight edges), as well as the
medial prefrontal and occipital areas, showed
positive relationships with reasoning (Fig. 4c).
Parcels with positive reasoning effects were
most numerous in the visual system (Fig. 4d).
Connections with the frontal pole (top parcel,
eight edges), the intraparietal sulcus, the
medial prefrontal cortex, and visual areas
showed negative associations with reason-
ing (Fig. 4e). Parcels with negative reason-
ing effects were most numerous in the visual, default mode,
and dorsal attention systems (Fig. 4f).

Sensitivity analyses
We conducted a set of sensitivity analyses to ensure that our
results were not dependent on particular analytical choices.
Specifically, we conducted our main analyses with a more
stringent preprocessing pipeline and motion exclusion cri-
teria. In this pipeline, measures of functional network seg-
regation were consistently positively associated with age,
including average within-system connectivity (b ¼ 0.22,
t 77ð Þ ¼ 3:02, p ¼ 0:003, pFDR ¼ 0.007), average between-sys-
tem connectivity (b ¼ �0.04, t 77ð Þ ¼ �3:02, p ¼ 0:003, pFDR ¼
0.007), overall system segregation (b ¼ 0.1, t 77ð Þ ¼ 2:53,
p ¼ 0:013, pFDR ¼ 0.01), the modularity quality index (b ¼
0.23, t 77ð Þ ¼ 3:74, p , 0:001, pFDR ¼ 0.002), and the clus-
tering coefficient (b ¼ 0.21, t 77ð Þ ¼ 2:67, p ¼ 0:009, pFDR ¼
0.01). Consistent with these associations, we found that
the average participation coefficient, a measure that inver-
sely tracks network segregation, was negatively correlated
with age (b ¼ �0.23, t 77ð Þ ¼ �2:66, p ¼ 0:009, pFDR ¼ 0.01;
Fig. 5a).

At the system resolution, age was positively, but weakly, asso-
ciated with within-system connectivity in the visual (b ¼ 0.25,
t 77ð Þ ¼ 2:21, p ¼ 0:030) and limbic (b ¼ 0.2, t 77ð Þ ¼ 2:05,
p ¼ 0:044) systems and was marginally positively associated
with within-system connectivity in the default mode (b ¼
0.17, t 77ð Þ ¼ 1:83, p ¼ 0:071) and somatomotor systems
(b ¼ 0.18, t 77ð Þ ¼ 1:93, p ¼ 0:057). None of these associations
survived correction for multiple comparisons. In contrast, age was
strongly associated with between-system connectivity (Fig. 5b).
Age was negatively associated with connectivity between the

default mode and ventral attention systems (b ¼ �0.17,
t 77ð Þ ¼ �3:09, p ¼ 0:003, pFDR ¼ 0.04). Age was also nega-
tively associated with connectivity between the default mode
and dorsal attention systems (b ¼ �0.17, t 77ð Þ ¼ �2:66,
p ¼ 0:009, pFDR ¼ 0.09), but this association was marginal after
FDR correction. Additionally, age was positively correlated
with connectivity between the visual and dorsal attention sys-
tems (b ¼ 0.36, t 77ð Þ ¼ 3:64, p,0:001, pFDR ¼ 0.01).

We next examined age effects at the parcel level to character-
ize regional specificity. Parcels with the highest number of posi-
tive edge-level age effects were observed in the superior parietal
lobule/intraparietal sulcus (two parcels with 11 and 9 significant
edges) and the occipital cortex (two parcels with 10 and 9 signifi-
cant edges; Fig. 5d). Parcels with the highest number of negative
edge-level age effects occurred in medial prefrontal cortex (eight
edges) and intraparietal sulcus (seven edges; Fig. 5e).

Finally, we examined relations between functional architec-
ture and visuospatial reasoning. Controlling for age, reasoning
was marginally positively associated with average within-system
connectivity (b ¼ 0.32, F 1; 72ð Þ ¼ 2:96, p ¼ 0:090, pFDR ¼
0.18) and marginally negatively associated with average between-
system connectivity (b ¼ �1.62, F 1; 72ð Þ ¼ 2:96, p ¼ 0:090,
pFDR ¼ 0.18). However, these associations did not pass correc-
tion for multiple comparisons, and reasoning was not associated
with other measures of whole-brain network architecture (p val-
ues. 0.05). At the system level, we focused on pairs of cognitive
systems that showed associations with age in the main analyses
and found that connectivity between the visual and dorsal atten-
tion systems was positively associated with reasoning ability (Fig.
5e; b ¼ 0.51, t 72ð Þ ¼ 4:00, p,0:001, pFDR ¼ 0.0008). We also
found that connectivity between the default and dorsal attention
systems was negatively associated with reasoning ability (b ¼
�0.72, t 72ð Þ ¼ �3:51, p ¼ 0:001, pFDR ¼ 0.0019). Reasoning
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Figure 3. Parcel-level effects of age on network connectivity. a, Number of edges from each parcel showing a sig-
nificant positive age association; significance was defined as punc , 0:001. b, Number of edges with positive effects of
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was not associated with within-system frontoparietal connectiv-
ity (b ¼ 0.17, t 72ð Þ ¼ 1:01, p ¼ 0:318, pFDR ¼ 0.53). At the par-
cel level, connections with superior parietal cortex (eight edges)
and visual areas (seven edges) showed positive relations with rea-
soning (Fig. 5f). Connections with the frontal pole (seven edges),
superior parietal cortex (two parcels with seven and six edges),
medial prefrontal cortex (six edges), and visual areas showed
negative associations with reasoning (Fig. 5g).

Discussion
We investigated the development of cortical functional net-
work architecture during childhood. At the whole-brain level,
age was positively associated with multiple measures of func-
tional network segregation, consistent with prior work on de-
velopment later in childhood and adolescence (Fair et al.,
2009; Marek et al., 2015; Lopez et al., 2020). At the system

level, age was associated with a segregation of systems involved
in attention from those involved in abstract, internally oriented
cognition, as well as an integration among attentional and per-
ceptual systems. At the parcel level, age effects on functional
connectivity were strongest in medial prefrontal areas of the
default mode system and in areas of the visual system.
Classically, brain development is thought to move from back to
front, from sensory areas to association areas. Our results sug-
gest another possibility, that is, both ends of the sensory-associ-
ation gradient are anchored early, perhaps by the presence or
absence of sensory input, and then boundaries along the gradi-
ent are gradually solidified. This possibility is consistent with
the very early emergence of the default mode network in utero
and in infancy (Gao et al., 2009; Thomason et al., 2014;
Gilmore et al., 2018; Hodel, 2018) and with work showing that
medial prefrontal cortex, like primary sensory areas, is already
highly segregated in adolescence (Baum et al., 2020). These
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Figure 4. Associations between functional network structure and visuospatial reasoning. a, Example reasoning item. Reasoning was assessed with the Matrix Reasoning subscale of the
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findings fill a critical gap in our understanding of how intrinsic
functional network remodeling supports the profound cognitive
development that takes place during early and middle
childhood.

Age effects were pronounced in areas of medial prefrontal cor-
tex that are activated by self-referential thought and social percep-
tion tasks in adults (de la Vega et al., 2016; Meyer and Lieberman,
2018; Parelman et al., 2022). This result is consistent with evidence
for major changes in social cognition between the ages of 3 and
10 years, supported by changes in the structure and function of
the medial prefrontal cortex, the precuneus, and the temporopar-
ietal junction (Weimer et al., 2021). Although we did not collect a

behavioral or imaging measure of social cognition in this sample,
we speculate that the medial prefrontal regions that show age
effects may support improvements in social cognition in this age
range. In this context, it is notable that medial prefrontal cortex
continues developing after 10 years of age and shows a protracted
course of age-associated change through adolescence and into
adulthood (Baum et al., 2020). The age-associated remodeling we
observe in medial prefrontal cortex may be simply an early mani-
festation of the ongoing anchoring of the far end of the sensorimo-
tor-association gradient that continues into adulthood. It is also
possible that changes in medial prefrontal connectivity more
broadly support self-regulation processes that are required for
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Figure 5. Replication with stricter motion exclusions. In this pipeline, we censored volumes with FD . 0.25 mm and excluded participants with average FD . 0.5 mm. a, Whole-brain
measures of functional network segregation (system segregation, modularity, and the clustering coefficient) are significantly positively associated with age. The participation coefficient is a
measure of functional network integration and is significantly negatively associated with age. b, Age effects on between-system connectivity. c, Number of edges from each parcel showing a
significant positive age association; significance was defined as punc , 0:001. d, Number of edges from each parcel showing a significant negative age association; significance was defined as
punc , 0:001. e, System-level associations with reasoning, controlling for age. Reasoning is associated with connectivity between the visual and dorsal attention systems and with connectivity
between the default mode and dorsal attention systems. f, The number of edges from each parcel showing a significant positive reasoning association; significance was defined as
punc , 0:001. g, The number of edges from each parcel showing a significant negative reasoning association; significance was defined as punc , 0:001. punc: uncorrected p value. Plots show
95% confidence intervals and partial residuals, controlling for in-scanner motion, sex, total number of volumes, and average network weight.
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efficiently completing many types of tasks (Akshoomoff et al.,
2014; de la Vega et al., 2016; Meyer and Lieberman, 2018).

Age effects were also pronounced in the visual system. The
visual network showed increased integration with the dorsal
attention network, particularly along the dorsal stream. The ma-
jority of inputs into primary visual cortex come from higher-
order visual areas and attention areas (Muckli and Petro, 2013),
so it is possible that inputs from attention systems are reflected
in the structure and function of perceptual areas. Indeed, atten-
tion improves substantially in early childhood (Amso and Scerif,
2015). Further, connectivity within regions of the dorsal atten-
tion and visual systems is positively associated with attention
skills in 4- to 7-year-old children (Rohr et al., 2017, 2018), sug-
gesting that the age effects we observe in regions of the visual sys-
temmay also support developing attention skills.

Better reasoning abilities were associated with more mature
patterns of brain network architecture, after controlling for age.
At the parcel level, reasoning was associated with the connectiv-
ity of medial prefrontal and visual areas, as well as the intraparie-
tal sulcus and the frontal pole. At the systems level, reasoning
was associated with integration between the visual and dorsal
attention systems and with segregation between the default
mode and dorsal attention systems. Prior work in older children
and adults has linked structure and function of the frontoparietal
system to reasoning skills, with a specific focus on rostral lateral
prefrontal cortex and parietal areas (Prado et al., 2011; Vendetti
and Bunge, 2014; Wertheim and Ragni, 2018). Interestingly, one
study found that neural correlates of reasoning depended on age;
after age 8 years, stronger reasoning skills were associated with
stronger functional connectivity between rostral lateral prefron-
tal cortices and the inferior parietal lobe, whereas before age
8 years, there were no such associations (Wendelken et al., 2016).
Similarly, we found no association between frontoparietal system
connectivity and reasoning ability in our age range. By taking a
whole-brain approach rather than focusing on the frontoparietal
network, we found that visuospatial reasoning is associated with
integration between perceptual and attentional systems in chil-
dren. We also found that reasoning was associated with segrega-
tion between task-positive and task-negative systems, consistent
with other work across multiple age ranges and cognitive
domains (Chan et al., 2014; Keller et al., 2015; Marek et al., 2019;
Bruchhage et al., 2020). The involvement of perceptual systems
such as the visual and dorsal attention systems in reasoning
may not be as surprising as it initially seems; in children and
adults, reasoning tasks engage visual areas more than nonrea-
soning control tasks (Soulières et al., 2009; Mackey et al., 2015;
Whitaker et al., 2018). There is also evidence that reasoning
performance relies more on lower-level skills like processing
speed and visuospatial attention than on higher-level skills like
working memory and relational integration early in childhood
(Fry and Hale, 1996; Kail et al., 2016). Broadly, our results sug-
gest that maturation of brain network architecture, in particular
in areas at two ends of the sensory-association gradient, sup-
ports the development of reasoning abilities.

Making decisions about motion criteria is difficult because of
trade-offs between data quality and generalizability, as motion is
often highly correlated with other sample characteristics of inter-
est (Hodgson et al., 2017; Leonard et al., 2017; Bolton et al.,
2020). Our approach here was to analyze the data at two motion
thresholds, a more lenient threshold that included more children
and more data and a more conservative threshold that mini-
mized motion concerns. At both thresholds, the general pat-
tern of findings was the same. At the whole-brain level, age

was positively associated with measures of segregation. At the
system level, age was positively associated with segregation
between external and internal attention systems, and integration
between attentional and perceptual systems. Although the specific
parcel-level results were not identical, the broad pattern of results
was similar, with age effects on functional connectivity being
strongest in medial prefrontal cortex, superior parietal cortex, and
visual areas. Better reasoning abilities were associated with more
mature patterns of brain network architecture. This finding sug-
gests that our results are robust to variation in sample definition
and are not driven by motion.

Several potential limitations should be noted. First, our dataset
is cross-sectional and of a relatively small sample size. Future
work with longitudinal data will be necessary to establish the tem-
poral sequence of the relationships we report, as well as to better
evaluate nonlinearities and ideally, developmental trajectories in
children younger than age 4 years. Longitudinal data would also
make it possible to test whether changes in network structure
mediate age-related improvements in reasoning. Fortunately,
such a study—the HEALthy Brain and Cognitive Development
Study (Volkow et al., 2021)—is now beginning. Second, by care-
fully excluding data with motion artifacts, we may have limited
the generalizability of our findings. Most young children move in
the scanner, so it is essential to develop more motion-resilient
sequences to allow investigators to acquire data in a more repre-
sentative sample of young kids. Third, our cognitive measures
were limited. Future work is necessary to link changes in func-
tional organization to changes across a broader set of cognitive
and social skills, including abilities that might diminish with age,
such as creativity and imagination (Thompson-Schill et al., 2009;
Gopnik, 2020). Fourth, major cognitive and social changes during
middle childhood (called the age of reason by anthropologists
Sameroff and Haith (1996) have been observed across many cul-
tures all over the world, but our sample only captures develop-
ment in our specific geographic and cultural context. Finally, we
could not determine the causes of the developmental patterns we
uncovered. More work is needed to understand whether these
patterns were associated with specific experiences, for example
formal schooling (Brod et al., 2017; Nolden et al., 2021), or simply
reflect biological experience-independent maturation.

In sum, age effects on functional cortical architecture during
childhood parallel long-known age effects on behavior. As chil-
dren learn to resist the lure of perceptual information and begin to
reason abstractly, cortical systems for perception and abstraction
separate, whereas connections that facilitate attention tend to
strengthen. As children’s concept of self matures, the connectivity
of the medial prefrontal cortex changes. Our results provide new
insights into how changes in cortical organization give rise to
changes in the mind as children reach the age of reason.

Citation diversity statement
Previous work in several fields of science, including neuro-
science, where our work here is situated, has identified a bias in
citation practices in that papers from women and other margi-
nalized scholars are undercited relative to the number of such
papers in the field (Maliniak et al., 2013; Mitchell et al., 2013;
Caplar et al., 2017; Dion et al., 2018; Dworkin et al., 2020;
Chatterjee and Werner, 2021; Teich et al., 2021; Wang et al.,
2021). Here, we sought to proactively consider choosing referen-
ces that reflect the diversity of the field in thought, form of con-
tribution, gender, race, ethnicity, and other factors. First, we
obtained the predicted gender of the first and last author of each
reference we cited by using databases that store the probability of
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a first name being carried by a woman (Dworkin et al., 2020;
Gender Diversity Statement and Code Notebook v1.0; https://
doi.org/10.5281/zenodo.3672110). By this measure (and exclud-
ing self-citations of the first and last authors of this article), our
references contain 26% woman (first)/woman (last), 16%
man/woman, 20% woman/man, and 38% man/man categori-
zation. This method is limited in that (1) names, pronouns, and
social media profiles used to construct the databases may not in
every case be indicative of gender identity, and (2) it cannot
account for intersex, nonbinary, or transgender people. Second,
we obtained the predicted racial/ethnic category of the first and
last author of each reference by databases that store the proba-
bility of a first and last name being carried by an author of color
(Ambekar et al., 2009; Sood and Laohaprapanon, 2018). By this
measure (and excluding self-citations), our references contain
9.83% authors of color (first)/author of color (last), 16.45%
White author/author of color, 18.51% author of color/White
author, and 55.21% White author/White author. This method
is limited in that (1) names and Florida Voter Data to make the
predictions may not be indicative of racial/ethnic identity, and
(2) it cannot account for Indigenous and mixed-race authors or
those who may face differential biases because of the ambiguous
racialization or ethnicization of their names. We look forward
to future work that could help us to better understand how to
support equitable practices in science.
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